Design and analysis of sequential and parallel single-source shortest-paths algorithms

نویسنده

  • Ulrich Meyer
چکیده

We study the performance of algorithms for the Single-Source Shortest-Paths (SSSP) problem on graphs with nodes and edges with nonnegative random weights. All previously known SSSP algorithms for directed graphs required superlinear time. We give the first SSSP algorithms that provably achieve linear average-case execution time on arbitrary directed graphs with random edge weights. For independent edge weights, the linear-time bound holds with high probability, too. Additionally, our result implies improved average-case bounds for the All-Pairs Shortest-Paths (APSP) problem on sparse graphs, and it yields the first theoretical average-case analysis for the “Approximate Bucket Implementation” of Dijkstra’s SSSP algorithm (ABI–Dijkstra). Furthermore, we give constructive proofs for the existence of graph classes with random edge weights on which ABI–Dijkstra and several other well-known SSSP algorithms require superlinear averagecase time. Besides the classical sequential (single processor) model of computation we also consider parallel computing: we give the currently fastest average-case linear-work parallel SSSP algorithms for large graph classes with random edge weights, e.g., sparse random graphs and graphs modeling the WWW, telephone calls or social networks. Kurzzusammenfassung. In dieser Arbeit untersuchen wir die Laufzeiten von Algorithmen für das Kürzeste-Wege Problem (Single-Source Shortest-Paths, SSSP) auf Graphen mit Knoten, Kanten und nichtnegativen zufälligen Kantengewichten. Alle bisherigen SSSP Algorithmen benötigten auf gerichteten Graphen superlineare Zeit. Wir stellen den ersten SSSP Algorithmus vor, der auf beliebigen gerichteten Graphen mit zufälligen Kantengewichten eine beweisbar lineare average-case-Komplexität aufweist. Sind die Kantengewichte unabhängig, so wird die lineare Zeitschranke auch mit hoher Wahrscheinlichkeit eingehalten. Außerdem impliziert unser Ergebnis verbesserte averagecase-Schranken für das All-Pairs Shortest-Paths (APSP) Problem auf dünnen Graphen und liefert die erste theoretische average-case-Analyse für die “Approximate Bucket Implementierung” von Dijkstras SSSP Algorithmus (ABI-Dijkstra). Weiterhin führen wir konstruktive Existenzbeweise für Graphklassen mit zufälligen Kantengewichten, auf denen ABIDijkstra und mehrere andere bekannte SSSP Algorithmen durchschnittlich superlineare Zeit benötigen. Neben dem klassischen seriellen (Ein-Prozessor) Berechnungsmodell betrachten wir auch Parallelverarbeitung; für umfangreiche Graphklassen mit zufälligen Kantengewichten wie z.B. dünne Zufallsgraphen oder Modelle für das WWW, Telefonanrufe oder soziale Netzwerke stellen wir die derzeit schnellsten parallelen SSSP Algorithmen mit durchschnittlich linearer Arbeit vor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALGORITHMS FOR BIOBJECTIVE SHORTEST PATH PROBLEMS IN FUZZY NETWORKS

We consider biobjective shortest path problems in networks with fuzzy arc lengths. Considering the available studies for single objective shortest path problems in fuzzy networks, using a distance function for comparison of fuzzy numbers, we propose three approaches for solving the biobjective prob- lems. The rst and second approaches are extensions of the labeling method to solve the sing...

متن کامل

A Randomized Parallel Algorithm for Single-Source Shortest Paths

We give a randomized parallel algorithm for computing single-source shortest paths in weighted digraphs. We show that the exact shortest-path problem can be efficiently reduced to solving a series of approximate shortest-path subproblems. Our algorithm for the approximate shortest-path problem is based on the technique used by Ullman and Yannakakis in a parallel algorithm for breadth-first sear...

متن کامل

Efficient Parallel Algorithms for Planar st-Graphs1

Planar st-graphs find applications in a number of areas. In this paper we present efficient parallel algorithms for solving several fundamental problems on planar st-graphs. The problems we consider include all-pairs shortest paths in weighted planar st-graphs, single-source shortest paths in weighted planar layered digraphs (which can be reduced to single-source shortest paths in certain speci...

متن کامل

Implementing parallel shortest-paths algorithms

We have implemented a parallel version of the Bellman-Ford algorithm for the single-source shortest paths problem. Our software has been developed on the CM-5 using C with CMMD communication primitives. We have empirically compared the eeciency of our implementation with a sequential implementation of the Bellman-Ford-Moore algorithm developed by Cherkassky, Goldberg and Radzik. We have perform...

متن کامل

Single-Source Shortest Paths with the Parallel Boost Graph Library

The Parallel Boost Graph Library (Parallel BGL) is a library of graph algorithms and data structures for distributed-memory computation on large graphs. Developed with the Generic Programming paradigm, the Parallel BGL is highly customizable, supporting various graph data structures, arbitrary vertex and edge properties, and different communication media. In this paper, we describe the implemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002